Dive into reinforcement learning concepts and build applications that can learn and make decisions through trial and error.
Fundamentals of Reinforcement Learning
2
lectures
Understanding Rewards and Policies
Exploration vs. Exploitation
Building RL Models
3
lectures
Implementing Q-Learning
Deep Q-Networks (DQN)
Policy Gradient Methods
Trainer
Content Provider Enthusiast
Trainer Name
Content Provider Enthusiast
Non qui neque optio delectus dolorem aut.
0Rating
0Reviews
Accusantium quasi totam harum doloribus dignissimos quod. Omnis quod sapiente similique vitae. Vel culpa expedita dolorem ut laudantium et rerum.
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium
voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati
cupiditate non provident.